Analysis of the Murine Immune Response to Pulmonary Delivery of Precisely Fabricated Nano- and Microscale Particles

نویسندگان

  • Reid A. Roberts
  • Tammy Shen
  • Irving C. Allen
  • Warefta Hasan
  • Joseph M. DeSimone
  • Jenny P. Y. Ting
چکیده

Nanomedicine has the potential to transform clinical care in the 21(st) century. However, a precise understanding of how nanomaterial design parameters such as size, shape and composition affect the mammalian immune system is a prerequisite for the realization of nanomedicine's translational promise. Herein, we make use of the recently developed Particle Replication in Non-wetting Template (PRINT) fabrication process to precisely fabricate particles across and the nano- and micro-scale with defined shapes and compositions to address the role of particle design parameters on the murine innate immune response in both in vitro and in vivo settings. We find that particles composed of either the biodegradable polymer poly(lactic-co-glycolic acid) (PLGA) or the biocompatible polymer polyethylene glycol (PEG) do not cause release of pro-inflammatory cytokines nor inflammasome activation in bone marrow-derived macrophages. When instilled into the lungs of mice, particle composition and size can augment the number and type of innate immune cells recruited to the lungs without triggering inflammatory responses as assayed by cytokine release and histopathology. Smaller particles (80×320 nm) are more readily taken up in vivo by monocytes and macrophages than larger particles (6 µm diameter), yet particles of all tested sizes remained in the lungs for up to 7 days without clearance or triggering of host immunity. These results suggest rational design of nanoparticle physical parameters can be used for sustained and localized delivery of therapeutics to the lungs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro study on anti-inflammatory effects of epigallocatechin-3-gallate-loaded nano- and microscale particles

PURPOSE This study aimed to develop an anti-inflammation system consisting of epigallo-catechin-3-gallate (EGCG) encapsulated in poly(lactide-co-glycolic acid) (PLGA) particles to promote wound healing. METHODS Nano- and microscale PLGA particles were fabricated using a water/oil/water emulsion solvent evaporation method. The optimal particle size was determined based on drug delivery efficie...

متن کامل

Gold nano-particles as electrochemical signal amplifier for immune-reaction monitoring

A new signal amplification strategy based on simultaneous application of gold nanoparticles (AuNPs) and horseradish peroxidase (HRP) was employed to improve the sensitivity of an electrochemical immunoassay for detection of human IgG (hIgG), as a model antigenic protein. This immunoassay system was fabricated on magnetic carboxyl-functionalized multi-walled carbon nanotubes (COOH-MWCNT/Fe3...

متن کامل

Hemozoin Enhances Maturation of Murine Bone Marrow Derived Macrophages and Myeloid Dendritic Cells

Background: Falciparum malaria is a severe health burden worldwide. Antigen presenting cells are reported to be affected by erythrocytic stage of the parasite. Malarial hemozoin (HZ), a metabolite of malaria parasite, has adjuvant properties and may play a role in the induction of immune response against the parasite. Objective: To determine the immunological impact of hemozoin on the capacity ...

متن کامل

Gold nano-particles as electrochemical signal amplifier for immune-reaction monitoring

A new signal amplification strategy based on simultaneous application of gold nanoparticles (AuNPs) and horseradish peroxidase (HRP) was employed to improve the sensitivity of an electrochemical immunoassay for detection of human IgG (hIgG), as a model antigenic protein. This immunoassay system was fabricated on magnetic carboxyl-functionalized multi-walled carbon nanotubes (COOH-MWCNT/Fe3...

متن کامل

Cationic Immune Stimulating Complexes Containing Soluble Leishmania Antigens: Preparation, Characterization and in Vivo Immune Response Evaluation

Background: Cationic immune stimulating complexes (PLUSCOMs) are particulate antigen delivery systems. PLUSCOMs consist of cationic immunostimulatory complexes (ISCOMs) derivatives and are able to elicit in vivo T cell responses against an antigen. Objective: To evaluate the effects of PLUSCOMs containing Leishmaniamajor antigens (SLA) on the type of immune response generated in the murine mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013